Collision-Based Attacks Against
Whiteboxes with QBDI

Paul HERNAULT (@OxAcid)

Quarlslab

www.quarkslab.com

2/52

Table of Contents

Introduction : Why this talk, what is inside?

Whitebox cryptography : how and why ?

Whitebox cryptography through the lens of an example
Whiteboxes: concepts and implementations

Extracting the key : prerequisites

Extracting the key : application

Conclusion : Whitebox cryptography is not that hard

3/52

About this talk

acid@hyeres: $ whoami

Paul HERNAULT, engineer at Quarkslab
RE, Vulnerability research, fuzzing

Goal of the talk

Start from zero knowledge about whitebox cryptography
End up with a fully working attack
With (almost) no requirements® in : maths, crypto or RE

For more info : https://blog.quarkslab.com/
introduction-to-whiteboxes-and-collision-based-attacks-with-qbdi.html

1Some parts will be overlooked, due to the complexity, and time constraint
4/52

https://blog.quarkslab.com/introduction-to-whiteboxes-and-collision-based-attacks-with-qbdi.html
https://blog.quarkslab.com/introduction-to-whiteboxes-and-collision-based-attacks-with-qbdi.html

How to approach the subject 7

A walkthrough using a public whitebox

Understanding the need of whitebox cryptography
Analyzing how it is implemented

Identifying weaknesses

Building an attack and breaking a whitebox

5/52

Table of Contents

Introduction : Why this talk, what is inside?

Whitebox cryptography : how and why 7

Whitebox cryptography through the lens of an example
Whiteboxes: concepts and implementations

Extracting the key : prerequisites

Extracting the key : application

Conclusion : Whitebox cryptography is not that hard

6/52

An example : Digital Rights Management

Netflix : Sharing content

We want to share content

N—B—o

7/52

An example : Digital Rights Management

Netflix : Stealing content

But an attacker could steal it

N

8/52

An example : Digital Rights Management

Netflix : protecting the content

Protect the content with encryption

T
A\

9/52

An example : Digital Rights Management

Netflix : Reverse engineering

But an attacker could find the key
N—o—L2

10/52

An example : Digital Rights Management

Netflix : Protecting the protection

Protect the key
N—o—m=

11/52

An example : Digital Rights Management

Whitebox cryptography: protecting cryptographic assets

Whitebox cryptography is:
Protecting a cryptographic key in a hostile environnement
debugging, memory access, code patching

Tries to make the key non-extractable

12/52

Table of Contents

Introduction : Why this talk, what is inside?

Whitebox cryptography : how and why ?

Whitebox cryptography through the lens of an example
Whiteboxes: concepts and implementations

Extracting the key : prerequisites

Extracting the key : application

Conclusion : Whitebox cryptography is not that hard

13/52

Discovering the sample : GH2019 whitebox

Quick analysis

Most recent public sample | could find

A single exported function : void encrypt (uint8_t *buffer)

input: data to encrypt (in butfer)
output: encrypted data (in butfer)

Reverse-engineering is hard :(

Reverse engineering is long and tedious
We will observe the target behaviour instead of reading ASM
Where to start ? A quick trick
We are looking at a cryptographic algorithm
Visualizing memory accesses helps a lot understanding them

We will use QBDI for that!

14 /52

About QBDI

QBDI : QuarkslaB Dynamic binary Instrumentation

Cross-platform, cross-architecture instrumentation framework
Based on LLVM, written in C/C++ ; Python-scriptable
Think of it as a next-gen fast and scriptable debugger

QBDI Usage

Profiling

Binary tracing (trace recording/replay)
Deobfuscation 2

Closed-source Fuzzing 3

Crypto (This talk!)

2Romain Thomas : Android Native Library Analysis with QBDI
3Acid@Kyoto : Fuzzing Binaries using Dynamic Instrumentation - 5th France Japan CyberWorkshop

15/52

https://blog.quarkslab.com/android-native-library-analysis-with-qbdi.html
https://github.com/quarkslab/conf-presentations/blob/master/5th-France-Japan-CyberWorkshop/19-Kyoto-Fuzzing_Binaries_using_Dynamic_Instrumentation%20-%20HERNAULT%20Paul.pdf

Tracing the binary with QBDI

Having fun with pyQBDI !

3 steps to execute the binary with python #

import ctypes ; LoadLibrary(“whitebox.so”)
import pygbdi ; vm = pygbdi.VM()
vm.addMemAccessCB()
vm.call(encrypt_ptr, [data_ptr])

Plotting the data

From the execution, we collect a trace, that we can plot

x-axis: time of execution
y-axis: address accessed

4This is simplified. But scripting with pyQBDI is really easy.
16 /52

Visualizing Memory accesses

type
® stackwite

o ® stack read

120.487068516237

120.487068516221

140.487068516217T

140.48706851627

access

140.48706851619T

140.48706851618T

140.48706851617T

140.48706851616T

140.48706851615T 0 e

o 1000 2000 3000

5000 6000 7000 8000

17 /52

file:///home/acid/Documents/Instrumentation_Team/20-Barbhack/examples/visualize.html

Understanding memory accesses

What can we grab from the graph 7

Repeating patterns on stack accesses
10 “rounds” of operation

A crypto algorithm, with 10 round of operation... ?
AES-128 ?

Crypto is hard :(

A AES-128 whiteboxed binary

Cryptography is hard and painful
How can we extract the key without a PhD ?

18/52

Table of Contents

Introduction : Why this talk, what is inside?

Whitebox cryptography : how and why ?

Whitebox cryptography through the lens of an example
Whiteboxes: concepts and implementations

Extracting the key : prerequisites

Extracting the key : application

Conclusion : Whitebox cryptography is not that hard

19/52

Reminders about AES

AES cheatsheet ®

Symmetric cryptographic algorithm
Size of key : 128-bits (16-bytes)
10 rounds of operations composed of 4 specific operations

AddRoundKey
SubBytes
ShiftRows
MixColumns

5Here we talk about AES-128.
20/52

Reminders about AES ©

Input ——] AES init

;, AddRoundKey

[1 10 AES rounds
| ShiftRows

1

} MixColumns

(; Output | 4+——— AES end

6It is not an accurate AES, but it is easier to explain that way
21 /52

Reminders about AES

The AES operations

AddRoundKey
Simple XOR between the initial state and the round key

SubBytes
Substitue bytes with others

ShiftRows
Shifting bytes from the state

MixColumns
Mixing bytes together

22/52

What about whiteboxes ?

From a plain AES to a whiteboxed AES

Obviously, we want to somewhat hide AddRoundKey
We will merge all operations into lookup tables
Key will never appear in plain in memory

A round is basically “a big lookup” (more or less)

You can see before the round, or after the round. not in between.
An attacker cannot look at AddRoundKey and grab the key.

23/52

What about whiteboxes ?

Is AES protected ?

Is that enough to protect the key ? 7
AES is strong because there are many rounds

If you can isolate rounds. .. it becomes weak

You can revert a round
Compute the inverse functions of the 4 operations

"Note that, we are protecting round keys not the key per se
24 /52

What about whiteboxes ?

Is AES protected 7

But we can isolate rounds !

25 /52

Round isolated == key extracted ?

Accessing the state

With QBDI, we can identify rounds

We can observe the intermediate state of AES after a round

So could we recover the key ?
Compute InvMixColumns then InvShiftRow then InvSBytes

For the last operation, we know that

AddRoundKey(state_pre_round, round_key) = state_pre_round & round_key = state_post_round

Just need to XOR both states to recover the round key !

26 /52

|s the whitebox broken ?

Is that all we need ?

Exposing intermediate state in clear is the equivalent of exposing the round key

Whiteboxes are designed to be protected against that using InternalEncodings 8

Intermediate states are encoded in an unkwown way (merged into the lookup tables)
We never see any plain state

8Each round has its own encoding. The magic of maths allows to still conserve a real AES.
27 /52

Table of Contents

Introduction : Why this talk, what is inside?

Whitebox cryptography : how and why ?

Whitebox cryptography through the lens of an example
Whiteboxes: concepts and implementations

Extracting the key : prerequisites

Extracting the key : application

Conclusion : Whitebox cryptography is not that hard

28 /52

Considering internal encodings

So what now ?

Key is hidden in lookup tables
Cannot observe it in memory

Intermediate states are encoded

Cannot revert a round

Math is hard :(

With a bit of math, we could find the encodings
Could view plaint state —> Could reverse rounds
Math is not that hard, but i forgot everything i learnt

We will break the whitebox, without recovering encodings
We need to figure out 2 properties about AES
Those properties stand true both for a plain AES and a whitebox AES

29 /52

Observation #1: input-output dependency on a

For the following, we will use one round of encryption only

30/52

Observation #1: input-output dependency on a

Merging input and key

AddRoundKey creates a relation between input and key
Bytes are XORed together

Input
Key
AddRoundKey l

EEEEE EEEE EEEE

31/52

Observation #1: input-output dependency on a

Creating bytes relationship

MixColumns is the last operation. It mixes bytes together
But not all bytes are mixed together

SubBytes
ShiftRows

MixColumns

=_——HEEEEEEEEEEE

32/52

Observatlon #1: input-output dependency on a

What do we get from this ?

One output byte depends only on 4 bytes of the input/key

There is a defined relationship between the parameters and the output
It allows us to split AES in 4 independent parts

33/52

Observation #2: State collision and encodings

For the following, we will use one round of encryption only
For the following, we will modifies bytes that have a relationship
For the following, we use a plain AES

34 /52

Observation #2: State collision and encodings

Observation does not help. Comparison does.

A round of AES on 2 different plaintexts will always give 2 different ciphertexts

BT MR - AR

State at the end of round 0 l State at the end of round 0 1

(e [T TTTTTTTITT] WMWT (T [TTTTTTTT]

35 /52

Observation #2: State collision and encodings

Observation does not help. Comparison does.

A round of AES on 2 different plaintexts will always give 2 different ciphertexts
However, sometimes the ciphertexts have a few identical bytes

State at the end of round 0 1 State at the end of round 0 l

I%E-,IIJII_IIJILIJ I%.I—IIIIIIIILJIIJ

We call this a collission

36 /52

Observation #2: State collision and encodings

Byte collision and internal encodings

Now let's consider the same key, same plaintexts
But with an encoded intermediate state, using the bijection:

State at the end of round 0 l State at the end of round 0 l

@IIITITWHI EIID_LJIIIITHI

Bytes are differents, but the collision still exists !

37/52

Observation #2: State collision and encodings

What do we get from this ?

If we are able to observe a collision on encoded states, that collision also exists on
plain states.

Note: This collision exists for a specific pair of inputs, and a specific key
Not all keys would generate a collision for this pair of inputs

38/52

Table of Contents

Introduction : Why this talk, what is inside?

Whitebox cryptography : how and why ?

Whitebox cryptography through the lens of an example
Whiteboxes: concepts and implementations

Extracting the key : prerequisites

Extracting the key : application

Conclusion : Whitebox cryptography is not that hard

39/52

Observation recap before diving in

This is true for both a plain and a whiteboxed AES

Observation #1: input-output dependency on a single round

One output byte depends only on 4 bytes of the input/key

Observation #2: State collision and encodings

If we are able to observe a collision on encoded states, that collision also exists on
plain states.

40/ 52

Diving in

Where to go from here 7

Thanks to QBDI, we can compute

Whitebox(inputA, inputB) == collision

This collision also exists on AES without internal encodings

AES(inputA, inputB. whitebox_key) == collision

But we don't know the key :(
We can bruteforce now !

41/52

Collision-based attacks : How-to

The process

Find 2 plaintexts that have a collision after a round of whiteboxed AES

Run those 2 plaintexts in a plain AES. Bruteforce the key
We operate on 32 bits | °

If we find a collision... We found the key !
Almost. . .

91t is still slow, check the blogpost to reduce optimize the research to 2°17 instead of 232
42 /52

Collision-based attacks : How-to

A set of potential keys

A few keys generate a collision for a pair of plaintext
How can we identify the good one ?

Collision

Colliding keys

43 /52

Collision-based attacks : How-to

Reducing the set

Find other collisions !

Colliding keys Colliding keys

Collision for Input 1/2 for Input 3/4 Collision

t

Output 3
4

Whitebox key

44 /52

Validating the key

Is that the good key 7

We recovered : GH19{AES is FUN} (looks good!)
Validate it with a python AES

data = [0]*16

cipher = AES.new("GH19{AES is FUN}", AES.MODE_ECB)
cipher.encrypt (data)
[200, 48, 81, 207, 15, 188, 94, 26, 143, 211, 192, 201, 176, 229, 73, 159]

O~NOOTBEWN =

pygbdi_vm.call(encrypt_ptr, data)
[200, 48, 81, 207, 15, 188, 94, 26, 143, 211, 192, 201, 176, 229, 73, 159]

Success \o/

45 /52

Validating the key

Good boy 1°

| SUCHIKEY
E

% 'av Al
MUCH!CRYPTO

Ohttps: / /www.instagram.com /goupix_the_dog/ 46 /52

Table of Contents

Introduction : Why this talk, what is inside?

Whitebox cryptography : how and why ?

Whitebox cryptography through the lens of an example
Whiteboxes: concepts and implementations

Extracting the key : prerequisites

Extracting the key : application

Conclusion : Whitebox cryptography is not that hard

47/ 52

Everybody is whitebox-fighting

What was required to break the whitebox

Observing intermediate rounds
We used QBDI, you could use gdb or Intel PIN

Figuring out a few stuff about AES
Playing around with data, you can quickly discover the described observations

What was not needed

Hardcore reverse-engineering
Head-scratching maths

Cosmic cryptography skills

48 /52

Last words

About the talk

This attack is not a novelty
Has been known for 15 years (yet still efficient)

There are countermeasures to this attack

But it is not the only attack ! (See DCA and DFA attacks)
A lot of things have been overviewed, to fit in time

Refer to the blogpost

11
https:
//blog.quarkslab.com/introduction-to-whiteboxes-and-collision-based-attacks-with-qgbdi.html
49 /52

https://blog.quarkslab.com/introduction-to-whiteboxes-and-collision-based-attacks-with-qbdi.html
https://blog.quarkslab.com/introduction-to-whiteboxes-and-collision-based-attacks-with-qbdi.html

Questions ? 12

2https:/ /www.instagram.com /goupix_the_dog/ 50,52

Questions?

	Introduction : Why this talk, what is inside?
	Whitebox cryptography : how and why ?
	Whitebox cryptography through the lens of an example
	Whiteboxes: concepts and implementations
	Extracting the key : prerequisites
	Extracting the key : application
	Conclusion : Whitebox cryptography is not that hard

