
Dump all the (ARM) things !

Before we start
● We might be short on time
● Please download the archive
● Install python dependencies

○ pip install pyHydrabus
● Install Jupyter notebook
● A serial communication utility (screen / putty / minicom / …)

About us
● Swiss hardware hackers

● Contributors to Hydrabus project

● Conferences / CTF / BBQ enthusiasts

About this workshop
● Introduction

○ Hardware hacking 101
○ JTAG

● Discover the ARM debug interface (SWD)
○ Architecture, protocols and signals
○ Identification process and low-level interaction
○ Firmware extraction

● Firmware RE
○ Ghidra import process and mapping
○ CTF

Please
respect workshop materials

This equipment is made available to you thanks to our personal investment

It could be used for future workshops

Introduction

Hardware hacking 101
● Not as difficult as it sounds !

● Similar to traditional penetration testing…but different…

● First step consists to identify the target, more specifically its:
○ Exposed interfaces: Serial, USB, RJ45, BLE, WIFI, …
○ Internal components: Micro controller, memory, …
○ Internal signals: UART, I2C, SPI, JTAG, SWD, …

Debug interface
● Manufacturers tend to leave a debug interface on their devices

○ Useful to reprogram or troubleshoot faulty products

● Some debug interface allows to read-back internal memory
○ Recover the firmware for fun & profit !

● Usual debug interfaces are usually JTAG or SWD interfaces

● Debugging can be achieved with Open On-Chip Debugger (OpenOCD)

JTAG - Joint Test Action Group
● Historically used to test circuits

○ Boundary scan
○ Read/Write chip pins

● Nowadays used for debugging
○ Instruction tracing/stepping
○ Memory access
○ …

● Main drawback at least 4 signals
required

JTAG - Discovery
● Identification issues

○ Labels not always present near each pins
○ Sometimes only test points are available

● Identification technique
○ Wire all pins to the tool

■ JTAGulator
■ Hydrabus

○ Probe every pin one after the other
○ Send the IDCODE command (0x00000000)
○ Forces every nodes to return their ID
○ Monitor the output

SWD - Serial Wire Debug
● ARM solution to avoid JTAG pin requirement

● Provide similar functionality as normal JTAG

● However, daisy-chaining devices as JTAG is not possible

Why using low-level SWD ?
● OpenOCD does lots of “magic” behind the scenes

● Some bugs can only be triggered when precisely controlling the interface
○ e.g. Race condition on STM32 chips

https://www.aisec.fraunhofer.de/en/FirmwareProtection.html

● Can analyze less documented custom APs

● Offer a faster access to SWD
○ Useful for fault attacks (e.g. nRF52x)

https://www.aisec.fraunhofer.de/en/FirmwareProtection.html

SWD - Signals
● SWCLK

○ The clock signal sent by the host
○ The frequency is defined by the host interface

● SWDIO
○ The bidirectional data signal to read from or write to the DP
○ The data is set by the host during the rising edge and sampled by the

DP during the falling edge of the SWDCLK signal

● Both lines should be pulled up on the target

SWD - Transactions
● Each transaction has 3 phases:

○ Request
■ 8 bits sent from the host

○ ACK
■ 3 bits sent from the target

○ Data
■ Up to 32 bits sent from/to the

host, with an odd parity bit

● On direction change a Trn cycle has
to be sent

Field Description
Start Start bit (Should be 1)
APnDP Access to DP(0) or AP(1)
RnW Write(0) or Read(1) request
A[2:3] AP or DP register address bits[2:3]
Parity Odd parity over (APnDP, RnW, A[2:3])
Stop Stop bit (Should be 0)
Park Park bit sent before changing SWDIO to open-drain (Should be 1)

SWD - Request

Bit Description
2 OK response

Operation was successful
1 WAIT response

Host must retry the request.
0 FAULT response

An error has occurred

SWD - ACK

SWD - Architecture
● Master

DP – Debug Port

● Internal bus
DAP - Debug Access Port

● Slaves
AP – Access Ports

SWD - RTFM
● Everything is explained in the ARM Debug Interface (ADI) architecture

specification
○ https://developer.arm.com/documentation/ihi0031

● Official documentation for the debug interface

Debug Port

DP - Debug Port
● Manages the communication with the external host

○ Forwards communication to DAP internal BUS

● 3 main DP types
○ JTAG Debug Port (JTAG-DP)

■ Standard JTAG interface and protocol

○ Serial Wire Debug Port (SW-DP)
■ SWD protocol to access the DAP

○ Serial Wire/JTAG Debug Port (SWJ-DP)
■ Switch between JTAG and SWD via a specific sequence
■ TMS/TCK are reused for SWDIO/SWCLK signals

DP - Registers
● Four registers control the DP

● IDCODE/ABORT (@ 0x0)
○ Identification code register (R)
○ Transaction abortion/error management (W)

● CONTROL/STATUS (@0x4)
○ Manage DP status

● SELECT (@ 0x8)
○ Select AP and AP bank to be contacted

● RDBUFF (@ 0xC)
○ Read buffer

SWD - Interface initialization
1. Send at least 50 SWCLKTCK cycles with SWDIO/TMS HIGH

a. Ensures that the current interface is in its reset state
b. The JTAG interface only detects the 16-bit JTAG-to-SWD sequence

starting from the Test-Logic-Reset state

2. Send the 16-bit JTAG-to-SWD select sequence on SWDIO/TMS

3. Send at least 50 SWCLKTCK cycles with SWDIO/TMS HIGH
a. Ensures that if SWJ-DP was already in SWD operation before sending

the select sequence, the SWD interface enters line reset state

DP - Initialization
● Once interface is initialized, the DP must be initialized as well

○ Read IDCODE register
○ Power up the debug domain by setting bits in the CTRL/STAT register

● Now ready to talk to Access Ports

LAB 1

SWD Discovery

Workshop kit
● Hydrabus

● Wires (~10x)

● Target

Hydrabus
● Open source multi-tool hardware

○ Created by Benjamin Vernoux
● Supports a lot of protocols
● Python bindings (pyHydrabus)
● Extensions via specific shields

○ HydraFlash
○ HydraLINCAN
○ HydraNFC

Hydrabus - Main features

Hydrabus - CLI
● help command shows the commands used in

each mode
− The prompt will show you which is the current

mode

● The CLI Supports Tab completion

● Once in a mode, protocol-specific commands
will be shown

● The show pins command shows which pins
are used for each mode

● More info on the HydraFW wiki
− https://github.com/hydrabus/hydrafw/wiki

Target

Exercise - Finding SWD !
● Connect the target to Hydrabus

○ GND first!
○ Then all other target pins to PBx
○ Power supply is 3.3V !

● Connect Hydrabus to the PC via USB
○ Access the CLI

■ Putty, telnet (Windows)
■ Screen (Linux)

● Enter 2-wire mode
● Use the integrated bruteforce utility

Solution
> 2-wire
twowire1> brute7
Bruteforce on 7 pins.
Device found. IDCODE : 0x3BC11477
CLK: PBx IO: PBx

How does it work ?
● Hydrabus will treat all pins combination as SWCLK/SWDIO, then for each

combination:
○ Send SWD initialization
○ Read DP IDCODE

● If different than 0x0 or 0xffffffff, display to the user

Access Port

AP - Access Ports
● Access Ports allow access to the target
● ARM provides specifications for two APs

○ Memory Access Port (MEM-AP)
■ Provides access to the core memory and registers

○ JTAG Access Port (JTAG-AP)
■ Allows connection of a JTAG chain to the DAP

● Multiple APs can be added to the DAP if needed

AP - Access
● Must use the DP to access an AP
● Same as with DP, only 4 registers accessible

○ Extended with banks in the DP SELECT register
● Only one common register: Identification register IDR (@ 0xfc)

○ Bank 0xf, register 0xc

AP - Registers
● Access to a register is made through the DP
● Several steps needed:

○ Set AP address and register bank in DP SELECT register
○ Issue a request to an AP register
○ If necessary, read DP RDBUFF to get return value

MEM-AP
● AP dedicated to the core memory

○ Allows access to all the MCU memory space
● Many advanced features, but we will only present basic memory

reads/writes

MEM-AP - Registers
● CSW - Control/Status Word (@ 0x0)

○ Control MEM-AP features

● TAR - Transfer Address Register (@ 0x4)
○ Set memory address

● DRW - Data Read Write Register (@ 0x0c)
○ Data to be read/written

MEM-AP - Memory read
● To read value @ 0x12345678 :

○ Set TAR to 0x12345678
○ Read DRW

● Easy ?

MEM-AP - Complete memory read
● Set DP SELECT register to bank 0, AP 0
● Write 0x12345678 to AP register 0x4 (TAR)
● (Set DP SELECT register to bank 0, AP 0) (Optional)
● Read to AP register 0xC (DRW)
● Read DP register 0xC (RDBUFF)

Core control
● Cortex-M CPUs can be controlled through special memory-mapped registers

● Allow access to CPU registers, control core, …

● DHCSR - Debug Halt and Control Register (@ 0xE000EDF0)
○ Allow to stop core execution, enable debug, ...

● Firmware is located at a specific memory location
○ Depends on manufacturer, verify memory map in the datasheet

● Access to the firmware must be done with CPU halted

Firmware extraction

Memory maps
● Extremely useful when reverse engineering a MCU firmware

○ Once the memory map is defined, you can cross-reference any register
to find related functions

● Can give a starting point for more complex firmwares
○ Example : Looking for any UART-related functions in a firmware

Example : STM32L011

Instrumenting SWD
● For Hydrabus: pyHydrabus has SWD primitives

○ Python bindings (https://pypi.org/project/pyHydrabus/)
■ pip install pyHydrabus

○ AP/DP read/write

https://pypi.org/project/pyHydrabus/

LAB 2

Firmware extraction

Exercise - Firmware extraction
● Use the provided Jupyter notebook
● You should end with a file named firmware.bin

MCU

MCU - Micro Controller Unit
● A single chip embeds a processor, memory and peripherals

● Lots of different options
○ Packaging
○ CPU core
○ Memory capacity
○ Peripherals

MCU - Peripherals
● All peripherals and capabilities use memory-mapped registers

○ In the MCU memory space, a region is dedicated to those
● When using peripherals, you basically have to read and write to specified

memory locations
● All memory locations are defined in the MCU datasheet
● Called MMIO (Memory-Mapped I/O)

Interrupts
● The MCU can generate interrupts for different events

○ More effective than polling for events in the code
● When an interrupt is enabled

○ MCU stops the current execution
○ Branches to the function pointed at a fixed address

● These fixed addresses are called interrupt vectors
● These interrupts are enabled by the developer

ARM

ARM - CPU architecture
● 16 registers

○ R0 – R15
● R15 is also known as PC (Program Counter)

○ Equivalent to EIP in x86
● R14 is also known as LR (Link register)

○ Stores the return address of a function call
● R13 is also known as SP (Stack Pointer)

ARM - Assembly 101
● Different instruction sets

○ ARM (32 bits instructions)
○ Thumb (16 bits instructions)
○ Thumb-2 (16 & 32 bit instructions)
○ NEON / Jazelle / … (not part of this course)

● Most embedded firmwares use Thumb(-2) instructions

● An ARM CPU can switch from ARM to THUMB mode on the fly
○ When calling a function, the LSB represents the mode

0=ARM, 1=THUMB

ARM - Thumb basic instructions
Instruction Meaning
MOV R0, #5 R0 = 5

ADD R0, R1, R2 R0 = R1 + R2

SUB R0, #10 R0 = R0 - 10

CMP R0, R3 Calculates R0 – R3, sets flags accordingly

BX R8 Jumps (Branches) execution to R8

LDR R4, [PC, #22] R4 = [PC+22]

STR R3, [R2, R6] [R2+R6] = R3

PUSH {R0-R3, LR} Pushes R0, R1, R2, R3, LR on the stack

ARM - Branch instructions
Instruction Meaning
BEQ R0 Branch if Z flag is set (equal to zero)

BNE R0 Branch if Z flag is unset (not equal to zero)

BGE R0 Branch if greater or equal

BLT R0 Branch if lower than

BGT Branch if bigger than

BLE Branch if less or equal

Most Thumb instructions can be executed conditionally based on the values of Application Program Status
Register (APSR) condition flags (e.g., Zero, Carry, Overflow, Negative).

ARM - Calling convention
● Usually, function parameters are passed in r0 to r3
● Result is stored in r0 at the end of the function

Instructions Meaning

mov.w r0, #0x3e8
mov.w r1, #0x01
bl function

function(1000, 1)

LAB 3

Firmware analysis

Firmware - Base address
● Update files usually contains only the MCU

flash image

● The base address can be different than 0x0
○ On STM32, flash base is 0x0800_0000

● Loading the firmware to the correct base
address is crucial for RE

● If not correctly done, all references will point to
the wrong place… ;(

Exercise - Firmware
Load the firmware in Ghidra

Firmware - Memory map
● Once code is loaded, we need to reconstruct the memory map

● Knowing registers addresses can help A LOT
○ MMIO
○ Need to get the memory map from the datasheet

● Reconstructing the interrupt vector table also helps
○ Normally in the datasheet
○ At least get the initial PC value

Firmware - Peripherals
CMIS-SVD

Common Microcontroller Software Interface Standard
(CMSIS)

System View Description (SVD)

https://github.com/posborne/cmsis-svd

SVD-Loader

Python script for Ghidra which parses SVD files and
generates the peripheral structs and memory maps

https://github.com/leveldown-security/SVD-Loader-Ghidra

Exercise - Firmware

SVD files

SVD Loader output

SRAM ?
● If SRAM is missing, just add it manually

Interrupt Vector Table (IVT)
● Contains the reset value of the

stack pointer and the start address

● Exception vectors, for all exception
handlers

● The least-significant bit of each
vector is 1 (exception is in Thumb
code)

Reset Function
● Initialize some registers

● 0x08001a18 == SystemInit()
○ Functions for system and clock setup

available in system_stm32l0xx.c

● 0x08001af8 == __libc_init_array()
○ GCC will put every constructor into an

array in their own section of flash
○ Newlib will iterate through the array to

call static constructors

● 0x08000388 == main()

RE tips
● Start from something known

● UART printings “Init done”

● LEDs blinking

● Enough tips…get the flag !

Congratulations !!!
● You survived the workshop !

● Hopefully learn something new about electronics

○ Low-level SWD interactions with an ARM device

○ Firmware extraction via the debug interface

○ Firmware loading & analysis with Ghidra

THANK YOU !

