Dump all the (ARM) things !

Before we start

e \We might be short on time
e Please download the archive
e Install python dependencies
o pip install pyHydrabus
Install Jupyter notebook
e A serial communication utility (screen / putty / minicom/ ...)

Formg orkshops : =TSN Aadl - : “ 22h00)
Les workshops de Barbhack dureront 1h30. G#¥acun disposera d'un l j Workshop#3:-Bump all the (ARM) things !
" ; Baldanos
ey AT e un Workeh o

we®® (audra fournir au minimum les

About us

e Swiss hardware hackers
e Contributors to Hydrabus project

e Conferences/ CTF / BBQ enthusiasts

About this workshop

e Introduction
o Hardware hacking 101
o JTAG

e Discover the ARM debug interface (SWD)
o Architecture, protocols and signals
o ldentification process and low-level interaction
o Firmware extraction

e Firmware RE
o Ghidra import process and mapping
o CTF

Please
respect workshop materials

This equipment is made available to you thanks to our personal investment

It could be used for future workshops

Introduction

Hardware hacking 101 &

o Not as difficult as it sounds !
o Similar to traditional penetration testing...but different...

o First step consists to identify the target, more specifically its:
o Exposed interfaces: Serial, USB, RJ45, BLE, WIFI, ...
o Internal components: Micro controller, memory, ...
o Internal signals: UART, I12C, SPI, JTAG, SWD, ...

Debug interface

e Manufacturers tend to leave a debug interface on their devices
o Useful to reprogram or troubleshoot faulty products

e Some debug interface allows to read-back internal memory
o Recover the firmware for fun & profit !

e Usual debug interfaces are usually JTAG or SWD interfaces

e Debugging can be achieved with Open On-Chip Debugger (OpenOCD)

JTAG - Joint Test Action Group

e Historically used to test circuits ,
o Boundary scan e /

>

o Read/Write chip pins T

o Nowadays used for debugging
o Instruction tracing/stepping

o Memory access
O

-
=
0w

o Main drawback at least 4 signals

02 [
[
—
—

T™S
TCK

™S T™S

DEVICE 1 "% DEVICE 2 T DEVICE 3

TDI
[CO——{T1DI TDO > TDI TDO

required

1 TDI TDO

JTAG - Discovery

e |dentification issues
o Labels not always present near each pins
o Sometimes only test points are available

e Identification technique
o Wire all pins to the tool

m JTAGulator

m Hydrabus
Probe every pin one after the other
Send the IDCODE command (0x00000000)
Forces every nodes to return their ID
Monitor the output

O O O O

SWD - Serial Wire Debug

e ARM solution to avoid JTAG pin requirement
e Provide similar functionality as normal JTAG

e However, daisy-chaining devices as JTAG is not possible

Why using low-level SWD ?

e OpenOCD does lots of “magic” behind the scenes

e Some bugs can only be triggered when precisely controlling the interface
o e.g. Race condition on STM32 chips
https://www.aisec.fraunhofer.de/en/FirmwareProtection.html

e Can analyze less documented custom APs

e Offer a faster access to SWD
o Useful for fault attacks (e.g. nRF52x)

https://www.aisec.fraunhofer.de/en/FirmwareProtection.html

SWD - Signals

e SWCLK
o The clock signal sent by the host
o The frequency is defined by the host interface

o« SWDIO
o The bidirectional data signal to read from or write to the DP
o The data is set by the host during the rising edge and sampled by the
DP during the falling edge of the SWDCLK signal

e Both lines should be pulled up on the target

SWD - Transactions

e Each transaction has 3 phases:
o Request
s 8 bits sent from the host

© ACK cook| | UMUMU YL LU U U i Uy LU
m 3 bits sent from the target .

o Data HE “PJ oo romern
s Up to 32 bits sent from/to the . Figure\;-successm — |

host, with an odd parity bit

e On direction change a Trn cycle has
to be sent

SWD - Request

Start Start bit (Should be 1)
APnDP Access to DP(0) or AP(1)
RnW Write(0) or Read(1) request

A[2:3] AP or DP register address bits[2:3]

Parity Odd parity over (APnDP, RnW, A[2:3])

Stop Stop bit (Should be 0)

Park Park bit sent before changing SWDIO to open-drain (Should be 1)

SWD - ACK

Bit Description
2 OK response
Operation was successful
1 WAIT response
Host must retry the request.
0 FAULT response

An error has occurred

SWD - Architecture

e Master
DP — Debug Port

e Internal bus Physica
DAP - Debug Access Port o

Debug
Port
(DP)

Memory
Access Port |«
(MEM-AP)

AP Access

Debug Access Port (DAP)

ARM Debug Interface v5

Memory
access

Processor
Debug
Register
File

e Slaves
AP — Access Ports

Microprocessor
core

SWD - RTFM

o Everything is explained in the ARM Debug Interface (ADI) architecture
specification
o https://developer.arm.com/documentation/ini0031

o Official documentation for the debug interface

Debug Port

DP - Debug Port

e Manages the communication with the external host
o Forwards communication to DAP internal BUS

e 3 main DP types
o JTAG Debug Port (JTAG-DP)
m Standard JTAG interface and protocol

o Serial Wire Debug Port (SW-DP)
m SWD protocol to access the DAP

o Serial Wire/JTAG Debug Port (SWJ-DP)
m Switch between JTAG and SWD via a specific sequence
m TMS/TCK are reused for SWDIO/SWCLK signals

DP - Registers

e Four registers control the DP

IDCODE/ABORT (@ 0x0)
o Identification code register (R)
o Transaction abortion/error management (W)

e CONTROL/STATUS (@0x4)
o Manage DP status

o SELECT (@ 0x8)
o Select AP and AP bank to be contacted

e RDBUFF (@ 0xC)
o Read buffer

SWD - Interface initialization

1. Send at least 50 SWCLKTCK cycles with SWDIO/TMS HIGH
a. Ensures that the current interface is in its reset state
b. The JTAG interface only detects the 16-bit JTAG-to-SWD sequence
starting from the Test-Logic-Reset state

2. Send the 16-bit JTAG-to-SWD select sequence on SWDIO/TMS

3. Send at least 50 SWCLKTCK cycles with SWDIO/TMS HIGH
a. Ensures that if SWJ-DP was already in SWD operation before sending
the select sequence, the SWD interface enters line reset state

DP - Initialization
e Once interface is initialized, the DP must be initialized as well
o Read IDCODE register
o Power up the debug domain by setting bits in the CTRL/STAT register

e Now ready to talk to Access Ports

LAB 1

SWD Discovery

Workshop kit

e Hydrabus
o Wires (~10x)

e Target

Hydrabus

e Open source multi-tool hardware
o Created by Benjamin Vernoux
e Supports a lot of protocols
e Python bindings (pyHydrabus)
o Extensions via specific shields
o HydraFlash
o HydraLINCAN gz
o HydraNFC

Hydrabus - Main features

microUSB MicroUSB.
USB1/DFU LSFS USB2- OTG LSIFS

Jumper to Enable
ULED
Jumper to Enable
Switch UBTN
User Button UBTN

RESET Button

MicroSD slot
on bottom layer

SDIO D1

SDIO DO

HOS TIdS
OSINTIdS

ISON TIdS

Legend:

SPI SDIo

USART1/ LIN1 RX
USARTL / LINLTX

2-Wire

3-Wire Other

WM

1093m

X1 INVD
X INVO

00 93M

SPI2CS.
SPIZMISO
SPI2 MOSI.

L0 HO dWNS

SWD / Debug
~+3V3

*SWCLK - PA14

+*SWDIO - PA13
“NRST

+Not Connected

Hydrabus - CLI

> help
Available commands
. help Available commands
. help command shows the commands used in o Commme 1oy
clear ear screen
eaCh mOde show Show information
logging Turn logging on or off
- The prompt will show you which is the current sd SD: card managexent
mode adc Read analog values

dac Write analog values
pwm Write PWM

. The CLI Supports Tab Comp|et|0n frequency Read frequency

gpio Get or set GPIO pins
spi SPI mode
. Once in a mode, protocol-specific commands . oo
WI" be Shown 2-wire 2-wire mode
3-wire 3-wire mode
f . . uar T mode
. The show pins command shows which pins - v
are used for each mode o o
jtag JTAG mode
. More |nf0 On the HydraFW Wlkl random Random number
flash NAND flash mode
- https://github.com/hydrabus/hydrafw/wiki wicgand e

lin LIN mode
smartcaxrd SMARTCARD mode
debug Debug mode

) EEAD6
Bl !
i

1

Exercise - Finding SWD !

o Connect the target to Hydrabus

o GND first! ; m N %ﬁcg-v:umm.mm.m, ey
o Then all other target pins to PBx SSRe
o Power supply is 3.3V ! Rl T, PO B cen
e Connect Hydrabus to the PC via USB =

o Access the CLI . @

= Putty, telnet (Windows) PR T o g =

. ; PHP1 GNDemsid éay
= Screen (Linux) SO peser o

e Enter 2-wire mode
Use the integrated bruteforce utility

Solution

> 2-wire

twowire1> brute7

Bruteforce on 7 pins.

Device found. IDCODE : 0x3BC11477
CLK: PBx |O: PBx

| = |

[nRST)
SWCLK

SWDIO

12C_SDA

[~

26 SCL

UART_TX)

UART_RX

oo

(@)

How does it work ?

o Hydrabus will treat all pins combination as SWCLK/SWDIO, then for each
combination:
o Send SWD initialization
o Read DP IDCODE

o If different than 0x0 or Oxffffffff, display to the user

Access Port

AP - Access Ports

e Access Ports allow access to the target
o ARM provides specifications for two APs
o Memory Access Port (MEM-AP)
m Provides access to the core memory and registers
o JTAG Access Port (JTAG-AP)
s Allows connection of a JTAG chain to the DAP
e Multiple APs can be added to the DAP if needed

AP - Access

e Must use the DP to access an AP

e Same as with DP, only 4 registers accessible
o Extended with banks in the DP SELECT register

e Only one common register: Identification register IDR (@ 0xfc)
o Bank Oxf, register Oxc

AP - Registers

e Access to a register is made through the DP

e Several steps needed:
o Set AP address and register bank in DP SELECT register
o Issue arequest to an AP register
o If necessary, read DP RDBUFF to get return value

MEM-AP

e AP dedicated to the core memory
o Allows access to all the MCU memory space
e Many advanced features, but we will only present basic memory
reads/writes

MEM-AP - Registers

e CSW - Control/Status Word (@ 0x0)
o Control MEM-AP features

o TAR - Transfer Address Register (@ 0x4)
o Set memory address

o DRW - Data Read Write Register (@ 0x0c)
o Data to be read/written

MEM-AP - Memory read

e Toread value @ 0x12345678 :
o Set TAR to 0x12345678
o Read DRW

o Easy?

MEM-AP - Complete memory read

o Set DP SELECT register to bank 0, AP 0

o Write 0x12345678 to AP register 0x4 (TAR)

e (Set DP SELECT register to bank 0, AP 0) (Optional)
o Read to AP register OxC (DRW)

e Read DP register 0xC (RDBUFF)

Core control

e Cortex-M CPUs can be controlled through special memory-mapped registers
o Allow access to CPU registers, control core, ...

e DHCSR - Debug Halt and Control Register (@ OxEOOOEDFO)
o Allow to stop core execution, enable debug, ...

Firmware extraction

e Firmware is located at a specific memory location
o Depends on manufacturer, verify memory map in the datasheet

e Access to the firmware must be done with CPU halted

Memory maps

o Extremely useful when reverse engineering a MCU firmware
o Once the memory map is defined, you can cross-reference any register
to find related functions
e Can give a starting point for more complex firmwares
o Example : Looking for any UART-related functions in a firmware

Example : STM32L011

Figure 2. Memory map

OxFFFF FFFF
7 0x5000 1FFF ok
0xE010 0000
Cortex-M0+ 0x5000 0000
peripherals
0xE000 0000
reserved
6
0xCO00 0000
0x4002 B3FF
5 AHB
0x4002 0000
0xA000 0000 reserved
0x4001 8000
4 Ox1FFF FFFF
Option bytes AP
0x8000 0000 0x4001 0000
System
memory reserved
3 0x4000 8000
0x6000 0000 Loz
0x4000 0000
2 reserved
0x4000 0000 | Peripherals
1 Flash system
memory
0x2000 0000 SRAM 0x0800 0000
reserved
0 CODE
Flash, system
memory or
0x0000 0000 SRAM,
depending on
BOOT
configuration
0x0000 0000
[: Reserved

MS34761V2

Instrumenting SWD

e For Hydrabus: pyHydrabus has SWD primitives
o Python bindings (https://pypi.org/project/pyHydrabus/)
m pip install pyHydrabus

o AP/DP read/write

https://pypi.org/project/pyHydrabus/

LAB 2

Firmware extraction

Exercise - Firmware extraction

e Use the provided Jupyter notebook
e You should end with a file named firmware.bin

e Ju pyter SWD-dump Last Checkpoint: 3 hours ago (autosaved) ; Logout

File Edit View Insert Cell Kemel Widgets Help Not Trusted ‘ Python3 O

B |+ | & B 4 ¥ | >R B C W Markdwn

SWD low-level interaction example

This notebook will show you how to interact with a target over SWD using Hydrabus

: |import pyHydrabus

Initialization

First instanciate the SWD interface, then perform the SWD initialization sequence. This module provides helpers to query the DP or any AP

= pyHydrabus.SWD()
.bus_init()

DP initialization
Start by reading the DPIDR

t (E"DPIDR: {hex(s.read dp(0))}")

MCU

MCU - Micro Controller Unit

A single chip embeds a processor, memory and peripherals

Figure 1. System architecture

Lots of different options

©)

©)

©)

Packaging

CPU core
Memory capacity
Peripherals

GPIO ports ”
AB.CD.EH NOPORD

Cortex
MO+

sttem bugl

DMA

Controller
(Channels

1t07)

—

MIF

Memory interface ::: NVM memory

SRAM

SYSCFG
FIREWALL
PWR
EXTI
ADC
COMP1/2
TIM2/3/6/7/21/22
LPTIM1
IWDG
WWDG
RTC
DBGMCU
12C1/2/3
USART1/2/3/4/LPUART1
SPI1/2

nnnnnnnnnn

MCU - Peripherals

o All peripherals and capabilities use memory-mapped registers
o Inthe MCU memory space, a region is dedicated to those
e When using peripherals, you basically have to read and write to specified
memory locations
e All memory locations are defined in the MCU datasheet
o Called MMIO (Memory-Mapped I/O)

Interrupts

e The MCU can generate interrupts for different events
o More effective than polling for events in the code
e When an interrupt is enabled
o MCU stops the current execution
o Branches to the function pointed at a fixed address
o These fixed addresses are called interrupt vectors
e These interrupts are enabled by the developer

ARM

ARM - CPU architecture

16 registers
o RO-R15
e R15is also known as PC (Program Counter)
o Equivalent to EIP in x86
e R14 is also known as LR (Link register)
o Stores the return address of a function call
e R13is also known as SP (Stack Pointer)

ARM - Assembly 101

o Different instruction sets
o ARM (32 bits instructions)
o Thumb (16 bits instructions)
o Thumb-2 (16 & 32 bit instructions)
o NEON/Jazelle /... (not part of this course)

e Most embedded firmwares use Thumb(-2) instructions

e An ARM CPU can switch from ARM to THUMB mode on the fly
o When calling a function, the LSB represents the mode
0=ARM, 1=THUMB

ARM - Thumb basic instructions

Instruction Meaning

MOV RO, #5 RO =5

ADD RO, R1, R2 RO =R1+ R2

SUB RO, #10 RO=R0-10

CMP RO, R3 Calculates RO — R3, sets flags accordingly
BX R8 Jumps (Branches) execution to R8

LDR R4, [PC, #22]

R4 = [PC+22]

STR R3, [R2, R6]

[R2+R6] = R3

PUSH {R0O-R3, LR}

Pushes RO, R1, R2, R3, LR on the stack

ARM - Branch instructions

Instruction Meaning

BEQ RO Branch if Z flag is set (equal to zero)

BNE RO Branch if Z flag is unset (not equal to zero)
BGE RO Branch if greater or equal

BLT RO Branch if lower than

BGT Branch if bigger than

BLE Branch if less or equal

Most Thumb instructions can be executed conditionally based on the values of Application Program Status
Register (APSR) condition flags (e.g., Zero, Carry, Overflow, Negative).

ARM - Calling convention

e Usually, function parameters are passed in rO to r3
e Resultis stored in rO at the end of the function

Instructions Meaning

mov.w r0, #0x3e8 function(1000, 1)
mov.w r1, #0x01
bl function

LAB 3

Firmware analysis

Firmware - Base address

o Update files usually contains only the MCU T T
flashimage e e
e The base address can be different than 0x0 ", /000
o On STM32, flash base is 0x0800_0000
e Loading the firmware to the correct base ; -
address is crucialforRE 7 -
o If not correctly done, all references will pointto ' —
the wrong place... ;(.

eeeeeeeeee

nnnnnnnnnnnn

Exercise - Firmware

Load the firmware in Ghidra

Format:
Language:
Destination Folder:

Program Name:

LRaw Binary

workshop_102:/

firmware.bin

Please select a language.

K Cancel ‘

Select Language and Col
Proc... B, | Vvariant Size | Endian | Compiler
Lo dofa A
Jittle default

tricore
32 little

default

tricore TC172x

tricore TC176x 32 little default

tricore TC29x 32 little default y
| Filter: cor 2]

Description

ARM Cortex / Thumb little endian

[show Only Recommended Language/Compiler Specs

0K { Cancel

Import /tmp/workshop/firmware.bin

Format:
Language:
Destination Folder:

Program Name:

| Raw Binary

ARM:LE:32:Cortex:default

workshop_102:/

firmware.bin

(0K | Cancel

N

Block Name i

Base Address | 08000000 I

File Offset 0x0
Length 0x2000
Apply Processor Defined Labels (]

Anchor Processor Defined Labels (V]

0K Cancel ;

Firmware - Memory map

e Once code is loaded, we need to reconstruct the memory map

e Knowing registers addresses can help ALOT
o MMIO
o Need to get the memory map from the datasheet

e Reconstructing the interrupt vector table also helps
o Normally in the datasheet
o At least get the initial PC value

Firmware - Peripherals

[version="1.0" encoding="utf-8" standalone="nc

CMIS'SVD mlns:xsichemav

XS :noNames a ema_1 1.xsd’
ST

Common Microcontroller Software Interface Standard el
(CMSIS)

System View Description (SVD)

https://github.com/posborne/cmsis-svd

SVD-Loader

ze>0x20 iz CMSIS-SVD XML Hierarchy
ox0

Python script for Ghidra which parses SVD files and resetMaskoOxFFFFFFFF

Device Level
generates the peripheral structs and memory maps rot e
i Advanced encryption standard hardware
accelerator
. . . A Peripherals Level
https://github.com/leveldown-security/SVD-Loader-Ghidra Cossoxk0026000

Registers Level

T N ;
2€>0x400</512 IFleldsLeveI

registers

AES_RNG_LPUART1</name>
AES global interrupt RNG global interr
LF’U—\RTI global interrupt through</description> |
29 |

Exercise - Firmware

o9 |z9

R ILG

Bundle Manager [CodeBrowse

Ve

=

Path

B,

| Build Summary

$GHIDRA_HOME/Debug/Debugger-agent-dbgmodel-traceloader/ghidra_scripts
$GHIDRA_HOME/Debug/Debugger-agent-frida/ghidra_scripts
$GHIDRA_HOME/Debug/Debugger/ghidra_scripts
$GHIDRA_HOME/Features/Base/ghidra_scripts
$GHIDRA_HOME/Features/BytePatterns/ghidra_scripts
$GHIDRA_HOME/Features/Decompiler/ghidra_scripts
$GHIDRA_HOME/Features/FileFormats/ghidra_scripts
$GHIDRA_HOME/Features/FunctionID/ghidra_scripts
$GHIDRA_HOME/Features/GnuDemangler/ghidra_scripts
$GHIDRA_HOME/Features/MicrosoftCodeAnalyzer/ghidra_scripts
$GHIDRA_HOME/Features/PDB/ghidra_scripts
$GHIDRA_HOME/Features/Python/ghidra_scripts
$GHIDRA_HOME/Features/VersionTracking/ghidra_scripts
$GHIDRA_HOME/Processors/8051/ghidra_scripts
$GHIDRA_HOME/Processors/Atmel/ghidra_scripts
$GHIDRA_HOME/Processors/DATA/ghidra_scripts
$GHIDRA_HOME/Processors/VM/ghidra_scripts
$GHIDRA_HOME/Processors/PIC/ghidra_scripts
$USER_HOME/ghidra_scripts

Edit Help

Bundle Manager

Enabled
&
(€]
&
&
&
&
&
&
&
&
&
&
&
&
&
(€]
v
&
&

Filter:

|

SVD files

> © Analysis (4| || Name
© Arm SVD-Loader.py
(5 Assembly
 Binary
Do
[cleanup
5 CodeAnalysis
[conversion
» 5 customersut
D pata
5 Data Types
5 Debugger
© pwarr
5 ELFRelocatio)
5 Emulation
» £ Examples
5 Functionid
5 Functions
5 Functionstart
» [GEARSHIFT
© Images
=] Import
5 Instructions
B ios

 Iteration &
= 1o Y

[——

S

[| Description

Load specified SVD and generate peripheral memory maps & structures.

=

My Computer

&

Desktop

Filter: £ |Filter: svd

SVD-Loader.py

Load specified SVD and generate peripheral memory maps & structures.

Author: Thomas Roth thomas.roth@leveldown.de
Category: leveldown security

Key Binding:

Menu Path:

[sTM32F301.5vd
[sTM32F302.5vd

vd [sTmM32F303.5vd
svd [sTM32F373.5vd
svd [sTM32F3x4.5vd
svd [sTM32F3x8.5vd
svd [sTM32F401.5vd
vd [7) sTM32F405.5vd
ox.svd [sTM32F407.5vd
wx.svd [sTm32F410.5vd
ox.svd [sTM32F411.5vd
oxsvd [7) sTM32F412.5vd
ox.svd [7) sTM32F413.5vd
x.svd [7) sTM32F427.5vd
svd [sTmM32F429.5vd
svd [sTM32F446.5vd
Pl

[STM32F469.5vd
[STM32F730.5vd
[sTM32F745.5vd
[*) sTM32F750.5vd
[STM32F765.5vd
[sTM32F7x.5vd

[sTM32F7x2.5vd
[STM32F7x3.5vd
[STM32F7x5.5vd
[F) STM32F7x6.5vd
[*) STM32F7x7.5vd
[STM32F7x8.5vd
[STM32F7x9.5vd
[5TM32G030.5vd
[sTM32G031.5vd
[*) sTM32G041.5vd

[sTM32G050.5vd
[sTM32G051.5vd
[sTM32G061.5vd
[sTM32G070.5vd
[sTM32G071.5vd
[sTM32G07x.5vd
[sTM32G081.5vd
[7) sTM32G0BO0.5vd
[sTM32G0B1.5vd
[sTM32G0C1.5vd
[sTM32G431xx.5vd
[7) sTM32G441xx.5vd
[7) STM32G471xx.5vd
[7) sSTM32G473xx.5vd
[sTM32G474xx.5vd
[sTM32G483xx.5vd

[sTM32G484xx.5vd
[sSTM32G491xx.5vd
[sTM32G4A 1 xx.svd
[sTM32GBK1CBT6.5vd
[7) sSTM32H742x.5vd

[) sSTM32H743x.5vd

[sSTM32H750x.5vd

[7) sTM32H753x.5vd

[sTM32H7A3x.5vd

[sTM32H7B3x.5vd

[sSTM32H7x3.5vd

[) sSTM32H7x5_CM4.5vd
[) sSTM32H7x5_CM7.5vd
[sSTM32H7x7_CM4.svd
[sTM32H7x7_CM7.5vd
STM32L0x1.svd

o

File name: STM32L0x1.svd

Type:

| All Files (*.)

| LoadsvDFile | |

SVD Loader output

SVD-Loader.py> Running...
Loading SVD file...

Done! T 1 $EETL

Generating memory regions... Memory Blocks
Done! Name | start B |End | Length |R |W |X |Volatile |Overlay |Type | Initialized | Byte Source | Source | Comment |

Generating peripherals... ram 03000000 08001fff 0x2000 M ()] (] Default 4] File: firmware.bi... Binary Loader ‘
AES TIM2_TIM3 40000000 400007 F 0x800 &80 @ [J Default o Generated by SV..
a1 TIM6_TIM7 40001000 400017ff 0x800 M¥MO @ [J Default a Generated by S
CRC RTC_WWDG_IW... 40002800 400033ff 0xc00 MO 4]] Default (@] Generated by SV..
SEIOA SPI2 40003800 40003bff 0x400 M¥MO @ a Default a Generated by SV... |
GEI08 USART2_LPUART... 40004400 40005bff 0x1800 M¥EMO @ 0 Default a Generated by SV...
GPIOC PWR 40007000 400073ff 0x400 MMO @ =) Default @] Generated by SV... |
GPIOD
ron LPTIM_I2C3 40007800 40007FFf 0x800 ¥ ™ Ej] EJ Default _:J Generated by SV..
GPIOE SYSCFG_COMP_.. 42010000 40010bff 2xcoo ¥ ¥ O ™ O Defautt O Generated by SV..
LPTIM TIM22 40011400 400117ff 0x400 M ™0 (] (] Default (] Generated by SV.. ‘
RTC Firewall 40011c00 40011FFf 0x400 MO]] Default (@] Generated by SV..
USART1 ADC 40012400 400127Ff 0x400 MO]] Default (@] Generated by S
USART2 SPI1 40013000 400133Ff 0x400 M0 W O Default (] Generated by SV..
USART4 USART1 40013800 40013bff x400 MO @ [Default O Generated by SV..
USARTS DBG 40015800 40015bff 0x400 M¥MO @ [J Default a Generated by SV..
TWDG DMA1 40020000 400203Ff 0x400 ¥M™O] (@] Default (] Generated by SV..
WWDG RCC 40021000 400213ff 0x400 M¥MO @ = Default = Generated by SV..
Firewall Flash 40022000 400223ff 0x400 M ™0 (] (2] Default (] Generated by SV..
RCC CRC 40023000 400233Ff 0x400 M0 W] Default (@] Generated by §
SYSCFG_COMP AES 40026000 400263ff 0x400 MO]] Default (@] Generated by S
SPI1 GPIOA_GPIOB_G... 50000000 500013ff 0x1400 ¥M ™0 W (3] Default (™} Generated by §
SPI2 GPIOH 50001c00 50001 ff 0x400 M¥EMO @ 0 Default a Generated by SV...
I2C1 STK €000e010 2000020 ox11 MO W 3] Default] Generated by SV... |
1202 NVIC ©000e100 e000e43c 0x33d M ™0] (@] Default (] Generated by SV..
I2C3 SCB €000ed00 e000ed40 oxa1 MO @ O Default (@] Generated by SV..
P‘;R i« MPU €000ed90 e000edad ox15 MO @ [J Default (] Generated by SV..
Flasl
EXTI
ADC
DBG
TIM2
TIM3
TIM6
TIM7
TIM21
TIM22
LPUART1
NVIC
MPU
STK
ScB

SVD-Loader.py> Finished!

SRAM ?

If SRAM is missing, just add it manually

Add Memory Block A

Block Name: 'SRAM

StartAddr: |ram: | ¥| 20000000

Length: 0x800
Comment: I
() Read [V] write (V] Execute [| Volatile [] Overlay
Block Types

LDefauIt

|(Initialized () File Bytes (® Uninitialized

[OK J | Cancel J

Interrupt Vector Table (IVT)

Contains the reset value of the
stack pointer and the start address

Exception vectors, for all exception
handlers

The least-significant bit of each
vector is 1 (exception is in Thumb
code)

16+n

P N W OO N 0 ©

N OB O PN

-10
-1
-12
-13
-14

Exception number IRQ number Offset

0Xx0040+4n

0Xx004C
0Xx0048
0Xx0044
0X0040

0X003C ;

0X0038

0Xx002C

0Xx0018
0Xx0014
0Xx0010
0X000C
0X0008
0X0004
0X0000

Vector

IRQN

IRQ2

IRQ1

IRQO

Systick

PendSV

Reserved

Reserved for Debug

SVCall

Reserved

Usage fault

Bus fault

Memory management fault

Hard fault

NMI

Reset

Initial SP value

Reset Function

e Initialize some registers
e 0x08001a18 == Systemilnit()
o Functions for system and clock setup
available in system_stm32|0xx.c
e 0x08001af8 == __libc _init_array()
o GCC will put every constructor into an
array in their own section of flash
o Newlib will iterate through the array to
call static constructors
e 0x08000388 == main()

void FUN_08001a74(void)

{

int
undefined4 *pu

if (_Reset >> @x18 == @x1f) {
Peripherals::RCC.APB2ENR = 1;

Peripherals: :SYSCFG_COMP.CFGR1 = @;

}

for (ivarl = @; (undefined4 *)((int)&DAT_20000000 +
*(undefined4 *)((int)&DAT_20000000 +

b

for (p 2 = &DAT_20000004; pt 2 < &DAT_200000f0; pu
* =@

}

FUN_08001a18();
FUN_08001af8():
FUN_@8000388() ;
do {

} while(true);

) < &DAT_200000

*(undefined4 *)((int)&DAT_08

|
I I FUN_0800@88c (&DAT_

FUN_08000a50 (&DAT_
FUN_08000a9¢ (&DAT_
0 = &Pe

e Start from something known

e UART printings “Init done” iﬂ;jgggggégg;ggn

oxFEFFFFFT);

e LEDs blinking .

do {
13 = Y2 + '\x01';
FUN_08000540(cVar2);
FUN_88000b58(100) ;

e Enough tips...get the flag o e
} while (cvar3 != '\b');
Funosoohea(

[while (cvar3 t= -1
FUN_080005ac (&DAT_0

iVard = ivard +

FUN_08000b58(100) ;

} while (ivard != 9);
} while(true);

Congratulations !!!

e You survived the workshop !

o Hopefully learn something new about electronics
o Low-level SWD interactions with an ARM device
o Firmware extraction via the debug interface

o Firmware loading & analysis with Ghidra

THANK YOU !

