'l"lil'I"lilll"lil'l"lil'l"ﬁl'l"lil'l"lil'l"lil'l' 'I-lil'+|il'+lil'+lil'+lil'+lil'+lil'+lil'+

- ey .
b

Iy @ Ay,

-_'.l .

_II- "l .: "

sh

o
-
#
+
i
g
i
#
#
+‘
#
+
+
+
LS
+
+
#
+

~I-'l-|+'l!|++|‘++|++|++|++|++|++|++

Player: Sylvain Pelissier $

Security researcher
Applied Cryptography
CTF player

@ipolit@mastodon.social

. KUDELSKI
{ SECURTTY ‘@

Introduction

Press Button to Continue

Introduction :

Hash functions are central inconstructing cryptographic
schemes. Primitives like SHA3 are well studied and offer
the security properties:

® Pre-image resistance
® Second pre-image resistance
® Collision resistance

This tTalk 1= not about..

Weak hashes 1like MD5:

Windows CryptoAPI Spoofing Vulnerability

CVE-2022-34689
Security Vulnerability

Released: Oct 11, 2022

Assigning CNA: O Microsoft

CVE-2022-34689 @

AADS‘(

R

!
2) - =

What happens for more complex schemes..

What happens for more complex schemes..

H:{0,1}* — {0,1}"

What happens for more complex schemes..

What happens 71 ’*1 omplex schemesS

A\L@
/Hx 0*" ,1 {0,1}* —>1L,

9\\ X
1. 6 7 1

The security analy&é W111 v1eW H ., Hy as random oracles

Domain separa+inn-%

Leve]l 1:

{
1
i
i

— iy

— iy

Example: Commiitments

You commit to a value v but do not reveal it in advance:

H(elv)

e is-a blinding value. Revealing (e,v) later, allows
everyone to verify the commitment.

— iy

Commitment example

I want to commit to a number .of.'potions I will buy. I first
compute my commitment and share it:

H(0x1337 1 0x1000%) = Oxcde356c0

Later I reveal the number of potions and the blinding value
and everybody can verify my commitment is right or-wrong

— iy

Commitment example

But I could have cheated:

H(0x1337 1 0x10004) = Oxcde356¢0
H(0x13371010x004) = Oxcde356c0

Both commitments are valid because there is no domain
i separation.

8

9
10 v
11
12

14
15
16

Sateheron commitment

export namespace HashCommitment {

export function createComwithBlind (message: BN, blindFactor: BN): BN {
const sha256 = cryptoJS.algo.SHA256.create()
sha256.update(Hex.toCryptoJSBytes(Hex.padEven(blindFactor.toString(16))))
sha256.update(Hex.toCryptoJSBytes(Hex.padEven(message.toString(16))))
const dig = sha256.finalize()
return new BN(cryptoJS.enc.Hex.stringify(dig), 16)

Commitment hacks

var msgl = new BN("1000", 16)

var blindl = new BN("1337", 16)

var coml = Cls.createComWithBlind(msgl, blind1l)
console.log(coml.toString(16))

var msg2 = new BN("00", 16)

var blind2 = new BN("133710", 16)

var com2 = Cls.createComWithBlind(msg2, blind2)
console.log(com2.toString(16))

assert.strictEqual(coml.eq(com2), true)

$ Commitments hacks $

Commitment
cde356c044a12a090c6148bdc8c90e5b945b8ecc081e3e414061601089177105
cde356c044a12a090c6T48bdc8c90e5b945b8ecc081e3e414061601089177105

v It should collide!

1 passing (9ms)

{ 01d is not alwaus better 1

BN CreateComwithBlind(const BN &num, const BN &blind_factor) {
uint8_t digest[CSHA256: :0UTPUT_SIZE];
CSHA256 sha256;
std::string buf;
num.ToBytesBE(buf);
sha256.write((const uint8_t*)buf.c_str(), buf.length());
blind_factor.ToBytesBE(buf);
sha256.wWrite((const uint8_t*)buf.c_str(), buf.length());
sha256.Finalize(digest);
return BN::FromBytesBE(digest, CSHA256::0UTPUT_SIZE);

|

i o

Same problem different places

Those kind of constructions are used a lot in practice:

e Merkle trees
e MPC especially threshold signatures scheme (TSS)
e Zero Knowledge proofs

L L.

-
L

Same problem different places

i o

e Binance TSS 1ib, io.finnet, Thorchain, .. (CVE-2022-47931)

e Multisig labs, Taurus (multi-party-sig) and other cryptography
libraries.

® Swiss Post e-voting bug found by Pascal Junod:

Ing Apples, Bananas anc

At the end of March 2022, we discovered a flaw in one of the core cryptographic building
blocks of the Swiss Post E-Voting System, more precisely in the specifications of the
recursive hash function it uses. Several system components which are critical to

guarantee the confidentiality and the integrity of the votes, such as non-interactive zero-

knowledge proofs and digital signatures, rely on this function. "k

https://crypto.junod.info/posts/recursive-hash/

Last year, Kudelski Security was hired by io.Finnet to audit their modified version of BNB-
Chain's tss-lib. Kudelski Security reported to io.Finnet the same hash collision issue again
due to concatenating input values with delimiter '$'. The issue this time got mitigated by
io.Finnet in a more elegant way and later publicly disclosed as C 931 on Mar 28,

23.

verichains

(¢ @ research.kudelskisecurity.com/2023/03/23/multiple n ld-cryptography-impl
CVE-2022-47931: Collision of hash values

The functions SHA512_256 and SHA512_256i are used to hash bytes or big integer tuples,
respectively. They take as input a list of values and output a hash. According to the paper,
those hash functions should behave like a random oracle, and thus it should not be easy

to find collisions.

The issue we found arises when hashing multiple concatenated input values, for
example, a list of bytes [“a”, “b", “c"]. The two vulnerable functions concatenate the values

by adding a separator “$” between each value to obtain the string “abc”. Then this

string is passed to the hash function SHA-512/256 to obtain the hash result. However, the

character "$" may itself be part of the input values, so this construction is prone to
o o collisions. As an example, the two input byte array tuples [“a$", "b") and ["a", "$b"] output
the same hash value.

1 Kudelski Security/io.Finnet'

o

f Cheat codes :

TupleHash is standardized by NIST:

NIST SP 800-185 SHA-3 DerIVED FuncTions: cSHAKE,
KMAC, TupLEHASH, AND PARALLELHASH

5 TupleHash

5.1 Overview

TupleHash is a SHA-3-derived hash function with variable-length output that is designed to
simply hash a tuple of input strings, any or all of which may be empty strings, in an
unambiguous way. Such a tuple may consist of any number of strings, including zero, and is

represented as a sequence of strings or variables in parentheses like (“a”, “b”, “c”
document.

,“2”) in this

TupleHash is implemented 1in:

Python: pvcryptodome
Javascript: noble-hashes

Go: tuplehash
Rust: sp800-185

Cheat codes 1

from Crypto.Hash import TupleHash128

h = TupleHash128.new(digest_bytes=32)

h.update([b"\x13\x37", b"\x10\x00"])

print(h.hexdigest())

608e67939254215bba5ef910249b115a1bf09e934fd6906aed8141fa04d220aa

h = TupleHash128.new(digest_bytes=32)

h.update([b"\x13\x37\x10", b"\x00"])

print(h.hexdigest())

3973c6f1ac7b4d7e9db31067cbec54417fc4b52592c1d8b17adec83ad7cce50d

https://github.com/Legrandin/pycryptodome
https://github.com/paulmillr/noble-hashes
https://pkg.go.dev/gitlab.com/yawning/tuplehash
https://crates.io/crates/sp800-185

Hash outpuits

Level #Z:

— iy

Hash output 1n a range :

How to hash a string to obtain a number in a specific range
for example a number between 0 and g ?

Taking H(m) mod g does not work because of modular bias.

Modular bias

import os

X = 1nt.from_bytes(os.urandom(1)) & Oxf

Generates numbers between 0 and 15 uniformly.
What happens if we take x % 10 ?

Modular bias

0|]1(2|3|4|5(|6 |7 (|89

Values 0,1,2,3,4,5 are twice more frequent than others

{ XOFs ,

eXtendable-Output Functions:

Produce any length of output

Have the same security properties (w.r.t the length)
For SHA3: SHAKE128 and SHAKE256

CSHAKE is based on SHAKE128 and SHAKE256 with domain
separation.

Still does not work is g is not a power of two !

Swiss Post e—votTing

't Solutions Digitization Data Security Solutions Reference:

E-voting
Online voting and elections

Voters and cantons
enthusiastic about
'successful’ e-voting
trial

Recursive hash

Crypto primitives 1.2.0:

Algorithm 4.9 RecursiveHashToZq: Computes the hash value of multiple inputs uni-

formly into Z,

Input:

Exclusive upper bound q € N*

Values v = (vg,...,v,_1). Each value v; is in domain 1, recursively defined as the

union of:
the set of byte arrays B*
the set of valid UCS strings Ay cg
the set of non-negative integers N

the set of vectors V*

Require: k> 0, |¢| > 512

Operation:

h < ByteArrayTolnteger(RecursiveHashOfLength(|q|,V))
and 4.10

2: while h > g do

h < ByteArrayTolnteger(RecursiveHashOfLength(|q|, h||v))

: end while
. return h

> See algorithms 3.8

> Prepend h to v

-
L

Recursive hash {

>>> v1.hex()

'abcdef0123456789'

>>> recursive_hash_zq(q, v1)
19805298709653418211520498/70540939322835465814543722419

— iy

Recursive hash

1: h < ByteArrayTolnteger(RecursiveHashOfLength(|q|,Vv))
and 4.10
2: whilgh > g do

3: { h &) ByteArrayTolnteger(RecursiveHashOfLength(|q|, h||v))
: elr""ule
5. return 1

>>> recursive_hash_zq(q, v1)

Step: 2538118759407973171811146791368667131241954935495
Step: 1980529870965341821152049870540939322835465814543
1980529870965341821152049870540939322835465814543722419 f

Recursive hash :

>>> v2 = [step, vi1]

>>> h2 = recursive_hash_zq(q, v2)

Step: 19805298709653418211520498705409393228354658145437224
=s=>hl = h?2

True

Recursive hash

Reported to Swiss post via the Bug bounty program
Acknowledge as a medium vulnerability

Patched in few days

Correction published in the new code and in Crypto
Primitives 1.2.1

Similar problems found and reported in several other
libraries

f Control the modular bias :

Use larger output values using a XOF:

1. Hash output values: len(q) + 256 bits
2. Reduce modulo g

|

The bias will be about ——
2256

B
h

Soluftion

Algorithm 4.9 RecursiveHashToZq: Computes the hash value of multiple inputs uni-

formly into Z,

Input:

Exclusive upper bound ¢ € N*
Values v = (vg,...,v,_1). Each value v; is in domain V| recursively defined as the

union of:
o the set of byte arrays B*
o the set of valid UCS strings Ay g
e the set of non-negative integers N

¢ the set of vectors V*

Require: k> 0, |¢| > 512

Operation:
1: h’ < ByteArrayTolnteger(RecursiveHashOfLength(|q| + 256, ¢||"RecursiveHash”||v))

> See algorithms 3.8 and 4.10
2: h < h’ mod ¢

Cheat codes

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: cSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

Appendix B—Hashing into a Range (Informative)

XOFs, PRFs, and hash functions with variable-length output like cSHAKE, KMAC, TupleHash,
and ParallelHash can easily be used to generate an integer X within the range 0 < X < R, denoted
as 0..R—1 in this document, for any positive integer R. The following method will produce
outputs that are extremely close to a uniform distribution over that range, assuming that the
above functions approximate a uniform random variable.

In order to hash into an integer in the range 0..R—1, do the following:

Let k =[1g(R) | + 128.

. Call the hash function with a requested length of at least k bits. Let the resulting bit string be
Z.
Let N = bits_to_integer(Z) mod R, where the bits_to_integer function is defined below.

Workgroup: CFRG

Cheat codes

Internet-Draft: draft-irtf-cfrg-hash-to-curve-16

Published: 15 June 2022
Intended Status: Informational

Expires: 17 December 2022
Authors: A. Faz-Hernandez S. Scott N. Sullivan R.S. Wahby C.A. Wood

Cloudfiare, Inc.

Cornell Tech Cloudflare, Inc. ~ Stanford University Cloudflare, Inc.

Hashing to Elliptic Curves

Abstract

This document specifies a numbe
elliptic curve. This document is a

5. Hashing to a finite field

The hash_to_field function hashes a byte string msg of arbitrary length into one or more elements of a field F.
This function works in two steps: it first hashes the input byte string to produce a uniformly random byte
string, and then interprets this byte string as one or more elements of F.

For the first step, hash_to_field calls an auxiliary function expand_message. This document defines two
variants of expand_message: one appropriate for hash functions like SHA-2 [FIPS180-4] or SHA-3 [FIPS202],
and another appropriate for extendable-output functions such as SHAKE128 [FIPS202]. Security
considerations for each expand_message variant are discussed below (Section 5.3.1, Section 5.3.2).

Hash 1o curwves

The Hashing to Elliptic Curves draft is defining ways to
hash values to elliptic curve points with desirable
features:

e Uniformly distributed

e Unknown discrete logarithm

e Domain separation

-
L

: Going Turther

Blog post:

GETTING APPLES, BANANAS OR CHERRIES FROM HASH FUNCTIONS !

& Audit i:'i‘IZ':’.Z ero-knowle age ® Lea a comment
This article is a follow-up of the exce st written last year by Pascal Junod. This explains the strange title. The former

post was about flaws regarding the lack of domain separation when hashing different type of data. In this new post we explore

related flaws we have found in the wild regarding implementations of hash function when the result need to lie in a specific
range.

https://research.kudelskisecurity.com

Conclusion

Two kind of pitfalls:

o Lack of domain separation

o Hash to a range

Using secure primitives to build more complex schemes
does not lead to secure protocols.

Some solutions, sometimes standardized, already exist:
RTFM

Puestions

> g
gl
R

e 0 n
> = 33 \m —.
.,A rLbTL.‘ r....\f\,\TA\
-

